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Abstract 

We evaluate the impact of credit conditions on firms’ emissions of toxic 
pollutants. There are differing influences: tighter credit might (a) stifle firm 
production, reducing toxic emissions, (b) induce firms to economize on noncore 
business functions, such as pollution abatement, increasing pollution; (c) have no 
effect on pollution if environment regulations bind. Using four identification 
strategies, we find that shocks that tighten a firm’s credit conditions increase its 
emissions of toxic pollutants, and those that ease a firm’s access to credit reduce 
its toxic emissions. The estimates suggest that finance exerts a large impact on 
firms’ emissions of toxic pollutants.   
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1. Introduction 

Pollution increases the incidence of cancer, cardiovascular and respiratory 

diseases, reproductive and neurodevelopmental disorders, and premature death 

(e.g., Chay and Greenstone 2003; Ebenstein et al. 2015; Currie and Neidell 2005; 

Knittel, Miller and Sanders 2016; Schlenker and Walker 2016; IIsen, Rossin-

Slater, and Walker 2017).1 Research indicates that about 16% of all deaths in the 

world in 2015 were attributable to pollution, with two-thirds of those premature 

deaths caused by air pollution and the remainder caused by water, soil, and 

occupational pollution (Lancet 2017). In the United States, the State of the Air 

2017 report by the American Lung Association shows that more than 40% of the 

U.S. public live in counties that have unhealthful levels of air pollution, and the 

U.S. Environmental Protection Agency (EPA) (2013) reports that more than half 

of the country’s rivers, streams, and waterways are so polluted that they cannot 

support healthy aquatic life and that tens of millions of people in the U.S. drink 

tap water with chemicals linked to cancer and other diseases, even though the 

water satisfies the conditions of the Clean Water Act (Duhigg 2009). 

Furthermore, firms release much of this pollution. For example, studies by the 

U.S. EPA (2014, 2015, 2016, 2018) indicate that industry accounts for about 22% 

of greenhouse gas emissions, 30% of total toxic air pollutants, and the bulk of 

toxic pollutants released into the land and water. Given pollution’s health effects, 

these statistics motivate research into the factors shaping firm pollution. 

In this paper, we evaluate the impact of credit conditions on firms’ 

emissions of toxic pollutants. Although decreasing pollution has long-run 

benefits, such as reducing expected fines from violating regulatory limits on toxic 

                                                           
1 In addition to harming public health, pollution reduces housing prices (e.g., Currie, Davis, 
Greenstone and Walker 2015), lower labor productivity (e.g., Zivin and Neidell 2012), and 
influences industrial production (e.g., Greenstone 2002). 
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emissions, augmenting the health and productivity of workers (e.g. Zivin and 

Neidell 2012), and enhancing the firm’s reputation, reducing pollution requires 

large upfront expenditures (e.g., Walker 2013).2 Accordingly, firms facing tighter 

credit conditions might choose to economize on noncore business functions, such 

as pollution abatement, to cushion the effects of tighter credit on profits, thereby 

increasing toxic emissions. There may, however, be countervailing influences. 

Effective regulatory systems might prevent firms from increasing pollution, and 

tighter credit might stifle investment and production, reducing toxic emissions. In 

this paper, we evaluate the impact of credit condition on toxic emissions.  

We employ four empirical strategies for identifying the impact of credit 

conditions on pollution. The first two strategies are based on a shock that eased 

firm credit conditions, and the second two strategies exploit shocks that tightened 

credit. We first describe the methods and results based on the credit-easing shock 

and then explain the analyses based on the credit-tightening shock.  

Our first two empirical strategies start by exploiting shale-induced 

liquidity shocks to individual banks. Gilje, Loutskina, and Strahan (2016) show 

that (1) unexpected technological breakthroughs in fracking made shale gas 

production economically viable; (2) following these technological breakthroughs, 

the energy industry began rapidly purchasing shale mineral leases from 

landowners in promising areas, i.e., in “shale counties;” (3) the landowners then 

deposited a portion of these mineral-lease payments in local banks, boosting bank 

liquidity; and (4) banks receiving shale liquidity shocks from their branch 

networks in shale counties increased their residential mortgage lending in non-

shale counties, i.e., counties that did not have shale development activities. Thus, 

                                                           
2 The EPA (a) estimates that companies spent more than $13.7 billion in 2016 to control pollution 
(https://www.epa.gov/enforcement/enforcement-annual-results-fiscal-year-2016) and (b) reports 
that fees/ penalties from for violating environmental laws reached $6 billion in 2016. 

https://www.epa.gov/enforcement/enforcement-annual-results-fiscal-year-2016
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we first confirm for our sample that (1) shale discoveries increased local bank 

deposits in shale counties, and (2) these banks increased their supply of credit to 

corporate clients in non-shale counties. 

Our first identification strategy uses these shale liquidity shocks to 

individual banks to construct measures of shocks to the credit conditions facing 

firms in non-shale counties. Specifically, after constructing measures of the 

degree to which banks in non-shale counties receive liquidity shocks through 

their branch networks in shale counties, we evaluate how these shocks influence 

pollution in those non-shale counties. For the dependent variable in these county-

level analyses, we use county-year measures of air pollution, which are collected 

from EPA monitoring stations across the country. Importantly, we focus on 

changes in credit conditions and environmental outcomes in counties without any 

shale discoveries or drilling activities. This mitigates concerns that our results are 

driven by changes in local economic conditions or environment quality resulting 

from shale development (Muehlenbachs, Spiller, and Timmins 2015; Hill and Ma 

2017). Moreover, we control for county and year fixed effects, as well as time-

varying county traits. Conceptually, therefore, our first strategy compares the 

environmental outcomes in two otherwise similar non-shale counties, except that 

banks in one county receive greater liquidity shocks through their branch 

networks in shale counties than banks in the other county.  

We discover that a positive shock to the supply of bank credit in a county 

lowers toxic pollution in the county. That is, when a non-shale county’s banks are 

more exposed to positive liquidity shocks through their branches in counties 

experiencing shale discoveries, we observe sharp reductions in pollution in those 

treated, non-shale counties. These results hold when (a) controlling for time-

varying county traits along with county and year fixed effects, (b) analyzing 
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different toxic pollutants, and (c) employing different measures of the intensity of 

air pollution. In terms of magnitudes, consider Benzene, the most monitored 

hazardous air pollutant by the EPA in our sample. We find that in counties where 

banks received a shale-liquidity shock equal to one standard deviation of the 

cross-county distribution of such shocks, Benzene concentration levels fell by 24% 

of the standard deviation of Benzene concentration across counties. It is worth 

mentioning that we show that the pollution-reducing effects of positive county 

liquidity shocks cannot be explained by differential pre-trends in pollution. 

Our second strategy uses the shale liquidity shocks to individual banks to 

construct measures of shocks to the credit conditions facing individual firms. To 

construct firm-specific credit shock indicators, we measure the degree to which 

banks in the county where a firm has its headquarters receive shale liquidity 

shocks. Specifically, we limit the analyses to firms with headquarters in non-

shale counties and construct measures of the degree to which banks in those non-

shale counties receive liquidity shocks through their branch networks in shale 

counties. We then evaluate the impact of those firm-specific credit shocks on 

toxic emissions by the firm’s plants, where we also limit the analyses to plants in 

non-shale counties. This second identification strategy relies on the assumption 

that a firm’s credit conditions are influenced by credit conditions in the county in 

which the firm has its headquarters. Extensive research provides empirical 

support for this assumption, e.g., Petersen and Rajan (2002), Berger et al. (2005), 

Agarwal and Hauswald (2010), and Berger, Bouwman, and Kim (2017).  

These plant-level analyses have advantages over the county-level strategy. 

First, the county-level analyses use air pollution data collected from EPA 

monitors, not measures of toxic emissions by plants. For the plant-level analyses, 

we use data from the EPA’s Toxic Release Inventory (TRI) program on toxic 
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emissions from each plant in each year. Second, the county-level analyses 

measure credit shocks and pollution in the same non-shale county. In the plant-

level analyses, we examine credit shocks to the plant’s headquarters and examine 

toxic releases by its plants. Critically, we omit all plants and headquarters located 

in shale counties—and in robustness checks we also omit plants and headquarters 

located in counties neighboring shale counties. Third, we include county-year 

fixed effects throughout the plant-level analysis, which distinguishes treatment 

effects—the easing of firm credit conditions—from local economic conditions 

that might affect plant behavior. We can include county-year effects because not 

all plants located in a county have their headquarters in the same county. 

Conceptually, therefore, our plant-level analyses compare the toxic releases by 

two otherwise similar plants operating in the same non-shale county, except that 

one plant has its headquarters in a county with banks that receive greater liquidity 

windfalls than the other plant.  

We find that positive shocks to the credit conditions facing firms reduce 

emissions of toxic pollutants by their plants. Our sample contains 94,304 plant-

year observations involving 12,296 plants affiliated with 4,035 private and public 

firms over the period from 2000 through 2013. The results are robust to 

controlling for plant, county-year, industry-year, and (headquarters)state-year 

fixed effects, as well as time-varying plant characteristics. The estimated 

economic magnitudes are material. For example, consider two otherwise similar 

plants, except that one receives a positive, sample mean liquidity shock due to its 

headquarters in a county with banks exposed to shale liquidity windfalls, while 

the other does not. The coefficient estimates indicate that toxic emissions from 

the “shocked” plant would fall by 6%.  
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In an extension, we evaluate whether—and confirm that—the pollution-

attenuating effects vary in a theoretically predictable manner across firms. 

Specifically, we differentiate plants by whether they are affiliated with privately-

held or publicly-listed firms. Since public firms tend to have greater access to 

finance beyond the credit provided by banks operating in the firms’ headquarters-

county, we expect shocks to local credit conditions to have a smaller impact on 

public firms. Consistent with this view, we discover that the pollution-reducing 

effects from bank liquidity shocks in a firm’s headquarters-county are much 

stronger among private firms.  

In a second extension, we conduct two-stage least squares (2SLS) 

regressions. In the first stage, we use shale discoveries as an instrument for 

changes in banks deposits, and in the second stage we evaluate the impact of 

shocks to bank deposits in firms’ headquarters county on toxic emissions by their 

plants. As in all of the analyses, we limit the analyses to firms with headquarters 

in non-shale counties and measure the degree to which banks in those non-shale 

counties receive liquidity shocks through their branch networks in shale counties. 

The 2SLS extension allows us to assess the economic magnitude of a positive 

liquidity shock—now measured as the percentage change in deposits—on 

pollution. The 2SLS results both confirm that easing firms’ credit constraints 

tends to reduce toxic emissions by their plants and indicate that the effects are 

large: A 1 percentage point increase in bank deposits in a firm’s headquarters-

county reduces toxic emissions by its plants by about 8%. 

The third identification strategy exploits a shock that tightened credit—

the global financial crisis—and develops a firm-level proxy for the credit-

tightening impact of the crisis on each firm. Following Almeida et al. (2012), and 

Cohn and Wardlaw (2016), we use heterogeneity in the degree to which firms 
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have debt maturing in the year prior to the crisis to proxy for the credit-tightening 

impact of the crisis on firms. Since (a) the financial crisis made it difficult for 

firms to roll over maturing debts (Acharya and Mora 2015) and (b) firms were 

unlikely to have anticipated the crisis when taking on those debts prior to the 

crisis, we use the interaction between firms’ pre-determined debt structure and 

the onset of the crisis as an exogenous source of variation in the severity of the 

credit crunch shocking individual firms. We then examine the impact of this 

credit tightening on toxic emissions by the firms’ plants.  

Our fourth identification also begins with the global financial crisis but 

we now exploit cross-bank differences in their pre-crisis holdings of private-label 

mortgage-backed securities (MBS). Compared to agency-backed MBSs, research 

suggests that private-label MBSs exposed banks to substantial losses and risks 

during the financial crisis, which was triggered by the collapse of the housing 

market (Ellul and Yerramilli 2013). Erel, Nadauld, and Stulz (2013) show that 

banks that held more securitized products before the crisis performed 

significantly worse during the crisis. Thus, we first develop a bank-specific 

measure of exposure to private-label MBSs before the crisis and show that this 

measure is strongly, positively associated with bank losses and the contraction of 

credit during the crisis. We then develop a measure of the degree to which banks 

in each firm’s headquarters county are exposed to these MBS-induced negative 

shocks, and use this firm-specific measure of credit tightening to evaluate the 

impact of credit conditions on toxic emissions by firms’ plants. 

Consistent with the findings based on shale-discovery shocks, we find 

that credit tightening triggered by the global financial crisis increased toxic 

emissions. First, when using heterogeneity in firms’ debt structures to proxy for 

the severity of credit tightening caused by the crisis, we discover that firms that 
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experienced greater credit tightening increased toxic emissions through their 

affiliated plants. These results are robust to including plant, county-year, 

industry-year, (headquarters)state-year fixed effects, and an assortment of time-

varying firm-level traits. Second, when banks in a firm’s headquarters county are 

more exposed to private-label MBSs, the financial crisis triggered a greater 

increase in toxic emissions by the firm’s plants. Thus, both the third and fourth 

identification strategies indicate that adverse shocks to firms’ credit conditions 

increase pollution by the firm’s plants. These results further emphasize that when 

credit conditions tighten, firms tend to economize on noncore business activities 

such as pollution abatement, leading to an increase in pollution emissions. 

Our key contribution in this paper is assessing how shocks to a firm’s 

credit conditions influence its omissions of toxic pollutants. Although researchers 

have shown that credit conditions shape a range of economy-wide features, such 

as economic growth (e.g., King and Levine 1993, Jayaratne and Strahan 1996, 

Levine and Zervos 1998, Rajan and Zingales 1998), business cycle fluctuations 

(e.g., Bernanke and Gertler 1989), and the distribution of income (e.g., Beck, 

Levine, and Levkov 2010), we are unaware of previous research that evaluates 

the impact of credit conditions on the environment. Given the enormous costs 

associated with pollution, our research highlights the broader ramifications of 

financial frictions on the economy and society. 

The paper proceeds as follows. Section 2 describes the data and variables. 

Section 3 describes the technological breakthroughs in fracking and shale 

discoveries, and the shocks to credit conditions. Section 4 presents the county-

level results and Section 5 provides the plant-level analyses. Section 6 employs 

two additional identification strategies and assesses how adverse shocks to credit 

conditions affect toxic emissions by plants. Section 7 concludes. 
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2. Data and Variables 

2.1 Toxic air pollutants concentration from EPA monitoring stations 

To evaluate the impact of an increase in the supply of bank credit on the 

local environment, we start our analysis by using EPA data on the concentration 

of hazardous airborne pollutants collected at outdoor monitors across the nation. 

The EPA (2017) defines hazardous airborne pollutants as “those pollutants that 

are known or suspected to cause cancer or other serious health effects (including 

reproductive effects or birth defects), or adverse environmental effects.” For each 

monitor, the EPA annual summary files contain pollutant-by-pollutant statistics 

on the arithmetic mean, 50th, 75th, and 90th percentiles of the readings from each 

monitor over each year. This provides annual measures of pollutant 

concentrations across geographic locations. We focus on (1) the five toxic 

pollutants with the most comprehensive data (Benzene, Toluene, Ethylbenzene, 

o-Xylene, and m/p Xylene) and (2) the standardized index of the top-10 most 

covered toxic pollutants (the five just mentioned and Styrene, Dichloromethane, 

Carbon tetrachloride, Tetrachloroethylene, and Chloroform), which we call Top-

10 Toxins. We construct this index by (a) standardizing each of the top-10 toxic 

pollutants into a variable that falls between zero and one and (b) taking the 

average across those ten standardized values for each monitor in each year.3  

To calculate the concentration of each hazardous air pollutant at the 

county-year level, we compute the average of each summary statistic—mean, 

median, 75th percentile, etc.—across monitors within the county and year. The 

average number of monitoring sites in a county equals 1.76, and the median value 

equals one. In the main text, we provide results using the mean values of these 

toxic pollutant concentrations. The results hold when using the median, 75th, and 

                                                           
3 We standardize the variable X into a [0, 1] range using (X– MIN(X)) / (MAX(X) – MIN(X)). 
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90th percentiles, as reported in the Online Appendix. Table 1 Panel A presents 

cross-county summary statistics on the annual mean values of Top-10 Toxins, and 

each of the five hazardous pollutant concentrations in our sample. Online 

Appendix Table A1 provides detailed variable definitions. 

 

2.2 Plant-specific toxic emissions from Toxic Release Inventory 

We also conduct analyses at the plant-level by obtaining pollutant 

emissions information on each individual plant from the Toxic Release Inventory 

(TRI) basic dataset, which is maintained by the U.S. Environmental Protection 

Agency (EPA). TRI collects information on the release of toxic chemicals from 

over 40,000 plants in the U.S. Starting in 1987, the TRI program tracks the 

release of toxic chemicals that cause significant adverse effects on human health 

or the environment. Industrial plants that (a) are involved in manufacturing, metal 

mining, electric power generation, chemical manufacturing and hazardous waste 

treatment, (b) have more than 10 full-time employees, and (c) use or produce 

more than threshold levels of TRI-listed toxic substances must report their 

releases of toxins to the TRI. The TRI provides self-reported toxic emissions data 

at the plant-level, along with information on the plant’s physical location, and its 

parent company’s name and firm ID.  

For each plant in a year, we measure its emissions of pollutants as the 

total amount of toxic chemicals released by the plant. Specifically, Total Toxic 

Releases is the logarithm total amount of toxic chemicals released (including air 

emissions, water discharges, underground injection, etc.) from each plant.4 To 

address the concern that our analyses might be driven by changes in local 

                                                           
4 We also conducted these analyses at the firm-level, rather than the plant-level. For each firm in 
each year, we measure its emissions of pollutants by summing up pollution emissions by its 
plants in non-shale counties. As shown in the Online Appendix, all of the results hold. 
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economic conditions resulting from the shale development activities, we exclude 

TRI plants located in counties where there has been shale development since 

2003 (i.e., shale counties), and plants affiliated with firms headquartered in shale 

counties. Our final TRI pollutant emission sample includes 94,304 plant-year 

observations over the 2000 – 2013 sample period, involving toxic release records 

from 12,296 plants affiliated with 4,035 private and public parent companies that 

are successfully matched with additional plant-year data that we describe next.  

 

2.3 National Establishment Time-Series (NETS) database 

We match the TRI data with detailed data on each plant and its firm using 

the National Establishment Time-Series (NETS) database, offered by Dun and 

Bradstreet. NETS follows over 58.8 million establishments as of January each 

year from 1990 to 2014, covering essentially the universe of businesses in the 

U.S. These data allow us to examine the pollution outcomes for both publicly 

listed and private firms and their plants. For each establishment, NETS contains 

dynamic information on its ultimate parent company and the geographic location 

of firm’s headquarters and all of its plants. We determine the headquarters-

county for each plant by linking the plant’s parent firm in TRI with firms in 

NETS using the common Dun & Bradstreet Number provided in both datasets.  

 

2.4 Shale wells data and bank liquidity shocks 

To create bank-specific measures of their exposure to shale discoveries, 

we begin with IHS Markit Energy, which is a comprehensive database that 

provides detailed information on the date, location, and well orientation for more 

than 100,000 shale wells drilled across the U.S over the period of 2003 – 2013. 

For each county in each year, we calculate the number of shale wells drilled since 
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2003, which is when technological innovations made “fracking” commercially 

viable.5 Wellsjt denotes the number of shale wells drilled in county j as of year t.  

To measure a bank’s liquidity gains from shale discoveries, we combine 

U.S. counties’ shale drilling activities with the bank’s local branch networks. We 

retrieve information on each bank’s branch structure, location of its branches, and 

deposit balances in those branches from the Federal Deposit Insurance 

Corporation’s (FDIC) Summary of Deposits database.  

Based on (a) the geographic distribution of a bank’s branches and (b) the 

number of shale wells drilled in each county, we construct two measures of each 

bank’s exposure to shale-induced liquidity shocks in each year. The first measure, 

Bank liquidity gain1, equals the logarithm of one plus the number of shale wells 

drilled across counties in which a bank has at least one branch, where the number 

of wells in each county is weighted by the bank’s market share in each county, 

divided by the total number of branches owned by the bank. Formally: 

𝐵𝐵𝐵𝐵 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑔𝑔𝑔𝑔1𝑏,𝑡 = 

𝐿𝐿�1 + ∑ �𝑊𝑊𝑊𝑊𝑊𝑗𝑗 ∗ 1�𝐵𝐵𝐵𝐵𝐵ℎ𝑒𝑒𝑏𝑏𝑏 > 0� ∗ 𝑀𝑀𝑀𝑀ℎ𝑟𝑏𝑏𝑏�𝑗 / 𝐵𝐵𝐵𝐵𝐵ℎ𝑒𝑒𝑏𝑏�,  (1a) 

where b represents bank, j denotes county, and t denotes year. 𝑊𝑊𝑊𝑊𝑊𝑗𝑗 denotes 

the number of shale wells drilled in county j from 2003 as of year t; 

1(𝐵𝐵𝐵𝐵𝐵ℎ𝑒𝑒𝑏𝑏𝑏 > 0) denotes an indicator that equals one if bank b has branches 

in county j at year t and zero otherwise; 𝑀𝑀𝑀𝑀ℎ𝑟𝑏𝑏𝑏 equals the proportion of all 

deposits held within county j in year t that are held at bank b’s branches within 

county j; 𝐵𝐵𝐵𝐵𝐵ℎ𝑒𝑒𝑏𝑏 equals the total number of branches owned by bank b in 

year t. By weighting the number of wells in a county by a bank’s market share in 

that county, this measure assumes that a bank’s liquidity inflows in a shale-
                                                           
5 Following existing research, we treat horizontal wells as the measure of shale-related activities. 
According to Gilje, Loutskina, and Strahan (2016), almost all horizontal wells in the U.S. are 
drilled to extract shale or other unconventional resources after 2002. 
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development county are proportional to its market share in that county. Note that 

Bank liquidity gain1 equals zero for (a) banks without branches in shale 

development counties, and (b) all banks before 2003, which is before the 

technological breakthrough that fostered fracking. As shown in Table 1 Panel C, 

Bank liquidity gain1 has a sample average of 0.08, with a higher value indicating 

greater liquidity shocks. And, among banks that are exposed to shale liquidity 

shocks, the sample average of Bank liquidity gain1 equals 0.6.  

Second, Bank liquidity gain2, takes the first measure and further weights 

by whether each branch is in a shale-boom county or not. We define a shale-

boom county as one in which the number of wells drilled in a year is in the top 

quartile for all shale-county-years in our sample. Following Gilje, Loutskina, and 

Strahan (2016), once categorized as a shale-boom county, it retains that 

categorization in all subsequent years. Formally: 

𝐵𝐵𝐵𝐵 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑔𝑔𝑔𝑔2𝑏,𝑡 =  𝐿𝐿[1 + 

∑ �𝑊𝑊𝑊𝑊𝑊𝑗𝑗 ∗ 1�𝐵𝐵𝐵𝐵𝐵ℎ𝑒𝑒𝑏𝑏𝑏 > 0� ∗ 𝑀𝑀𝑀𝑀ℎ𝑟𝑏𝑏𝑏 ∗ 1�𝐵𝐵𝐵𝐵𝑗𝑗��𝑗 𝐵𝐵𝐵𝐵𝐵ℎ𝑒𝑒𝑏𝑏� ],  (1b) 

where b represents bank, j denotes county, and t denotes year, and the other 

components,𝑊𝑊𝑊𝑊𝑊𝑗𝑗 , 1�𝐵𝐵𝐵𝐵𝐵ℎ𝑒𝑒𝑏𝑏𝑏 > 0� , 𝑀𝑀𝑀𝑀ℎ𝑟𝑏𝑏𝑏 , and 𝐵𝐵𝐵𝐵𝐵ℎ𝑒𝑒𝑏𝑏  are 

defined the same as above. 𝐵𝐵𝐵𝐵𝑗𝑗 is a dummy variable that equals one if the 

number of shale wells drilled in county j during year t is above the top quartile of 

county-years with shale development activities, and zero otherwise. Thus, this 

second measure captures each bank’s exposure to the shale liquidity shock 

through its branch networks across shale-boom counties only. 

 

3. Shale Discoveries and Bank Liquidity Gains 

In this section, we (1) describe shale development during the 2000s, (2) 

show that banks exposed to shale discoveries through their branches in areas with 
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shale discoveries experience sharp increases in bank liquidity (i.e., deposits), and 

(3) develop measures of the degree to which counties and firms are exposed to 

these liquidity shocks. In Sections 4 and 5, we use these measures to evaluate the 

impact of credit conditions on toxic emissions. 

 

3.1 “Fracking” and shale discoveries 

In late 2002, a technological breakthrough, known as “fracking,” 

combined horizontal drilling with hydraulic fracturing to make shale gas 

production economically viable. Therefore, we use 2003 as the first year when 

the oil and gas industry started large-scale investment in shale development. 

Fracking had an enormous impact on the energy market. According to Annual 

Energy Outlook (AEO 2016), shale gas went from accounting for less than 1% of 

U.S. natural gas production in the late 1990s to nearly 50% of total U.S. natural 

gas production by the end of 2015.  

 

3.2 Shale development and bank liquidity windfalls 

Given the technological improvements in fracking, oil and gas companies 

increased their purchase of mineral leases from landowners in promising areas. 

With mineral leases, local property owners typically receive payments, including 

a large upfront bonus, based on the number of leased acres, plus a royalty 

percentage on the extracted resources from the lease.  
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These purchases significantly boosted deposits in local banks. As 

described in Plosser (2015), leasing contracts typically involve a bonus that 

varies between $10 and $30,000 per acre, and a royalty percentage ranging from 

10% to 25%. Accordingly, if a family owns one square mile of land (equivalent 

to 640 acres) and leases this out at an average value of $15,005 per acre, they 

would receive an upfront payment of $9.6 million plus future royalties. Gilje, 

Loutskina, and Strahan (2016) show that deposits grow faster among banks 

exposed to shale boom counties compared to unexposed banks.  

We reassess and confirm this finding in our sample using the following 

regression:  

𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑔𝑔𝑔𝑔𝑔ℎ𝑏,𝑡 = 𝜑1𝐵𝐵𝐵𝐵 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑔𝑔𝑔𝑔𝑏,𝑡 + 𝜑2′Π𝑏,𝑡−1 + 𝛼𝑏 + 𝛼𝑡 + 𝜀𝑏,𝑡,      (2) 

where b and t denote bank and time, respectively. Deposit growthb,t is the growth 

rate of domestic deposits for bank b during year t. Bank liquidity gainb,t 

represents one of the two measures on a bank’s exposure to shale drilling 

activities described above (i.e., Bank liquidity gain1 or Bank liquidity gain2). The 

coefficient of interest is 𝜑1, which captures the extent to which a bank’s deposits 

grow in response to the shale development activities in its branch network. If 

shale-well drilling indeed brings a large liquidity windfall to local branch offices, 

we expect 𝜑1 to be positive and statistically significant. We also control for an 

array of time-varying bank specific characteristics measured at the beginning of 

each period (Π𝑏,𝑡−1), namely Total asset, Capital asset ratio, Deposit/Total assets, 

Liquid assets/Total assets, Mortgages/Total assets, C&I loans/Total assets, Loan 

commitments/Total assets, and Letters of credits/Total assets. We construct firm-

specific controls using data from Reports of Condition and Income (“Call 

Reports”). We include bank and year fixed effects, 𝛼𝑏  and 𝛼𝑡 , throughout the 

analyses. Standard errors are clustered at the bank level. 
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 The results reported in Table 2 indicate that shale-well drilling activities 

within a banking institution’s branch networks lead to a significant increase in 

that bank’s deposit growth. As shown in columns 1 and 2, both measures on bank 

liquidity gains enter the regressions positively and significantly. The economic 

magnitudes are meaningful. The coefficient estimates from column 1 indicate 

that deposits in banks that are exposed to the shale development activities with an 

average value of Bank liquidity gain1 (= 0.6) would grow 1.8 percentage points 

(=0.6*0.031) faster than banks without such exposure. This is equivalent to about 

22% of the sample mean of deposit growth. 

We also show that bank liquidity gains induce a material increase in the 

supply of credit. As reported in Table 2, we discover a strong, positive 

association between a bank’s exposure to shale liquidity shocks and the growth 

rate of its commercial and industrial (C&I) loans. The coefficient estimates 

reported in column 3 suggest that when a bank receives an average shale liquidity 

shock, i.e., Bank liquidity gain1 = 0.6, the bank’s C&I loans grow 2.4 percentage 

points (=0.6*0.04) faster than banks that are not exposed to shale development. 

This is large, as the estimated accelerate in growth is equivalent to 34% of the 

sample mean of C&I Loan growth.  

Several factors suggest treating shale-drilling activities as exogenous 

liquidity windfalls for local bank branches. First, the technological breakthroughs 

in fracking were unexpected. Second, the economic viability of shale wells is 

often driven by broader macroeconomic factors, such as demand for natural gas 

and prices of natural gas (Lake et al., 2013), that are unlikely to be correlated 

with local economic conditions (Gilje, Loutskina, and Strahan 2016). Third, at 

least two facts suggest that banks cannot strategically adjust branch networks to 

gain greater exposure to shale windfalls: (a) the discoveries of shale formations 
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in different geographies are uncertain, as it is difficult even for the oil and gas 

companies to predict how many wells an area needs to drill before producing 

shale gas; and (b) mineral leasing by the oil and gas companies usually occurs at 

a very rapid pace. As reported by Times-Picayune in 2008, several years after the 

technological breakthroughs, the signing bonuses for buying mineral rights in 

Louisiana’s Haynesville Shale area increased from about $100 per acre to 

between $10,000 and $30,000 per acre within one year.  

 

3.3 County- and firm-level liquidity shocks  

Having established that shale oil discoveries influence bank liquidity 

through their branches in areas exposed to these discoveries, we construct 

county-specific measures of the degree to which banks in non-shale counties—

counties in which shale was not discovered—receive liquidity shocks through 

their branch networks in shale counties.  

For each non-shale county in each year, we compute two county-level 

liquidity shocks measures based on the two bank-specific shale liquidity shock 

measures defined above and weight them by the share of the county’s deposits 

held by each bank. From Bank liquidity gain1, we construct:  

𝐶𝐶𝐶𝐶𝐶𝐶 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑔𝑔𝑔𝑔1𝑗,𝑡 = ∑𝜅𝑏,𝑗,𝑡 ∗ 𝐵𝐵𝐵𝐵 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑔𝑔𝑔𝑔1𝑏,𝑡,   (3) 

where County liquidity gain1j,t represents the extent to which banks in non-shale 

county j at time t received shale liquidity shocks via their branch networks in 

shale counties, Bank liquidity gain1b,t denotes the bank-specific shale liquidity 

shock measure for bank b in year t (Equation 1a), and 𝜅𝑏,𝑗,𝑡 is the share of county 

j’s total deposits in year t that are held in bank b’s branches located in county j. 

County liquidity gain2, is computed similarly based on Bank liquidity gain2b,t.  
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We also construct measures of shocks to each firm’s credit conditions by 

gauging the extent to which banks in the firm’s headquarters-county receive shale 

liquidity shocks. Specifically, for each plant we identify the firm’s headquarters-

county using the NETS database and compute the two corresponding county 

liquidity gain measures for that headquarters-county. Thus, for each plant, we 

assign the shale liquidity shock values associated with banks in the county in 

which its parent firm is headquartered. We refer to these measures as Firm-

county liquidity gain1 and Firm-county liquidity gain2.  

   

4. County-Level Liquidity Shocks and Environmental Quality 

4.1 County liquidity shocks and county pollution 

To evaluate the impact of county-level liquidity shocks on air pollution in 

these counties, we use the following regression specification. 

𝑃𝑃𝑃𝑃𝑗,𝑡 = 𝛽1𝐶𝐶𝐶𝐶𝐶𝐶 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑔𝑔𝑔𝑔𝑗,𝑡 + 𝛽2′Π𝑗,𝑡 + 𝛼𝑗 + 𝛼𝑡 + 𝜀𝑗,𝑡.   (4) 

The dependent variable, Pollj,t, is based on either Top-10 Toxins or one of the 

pollution concentration measures. For Top-10 Toxins and each of the five 

pollutants (Benzene, Toluene, Ethylbenzene, o-Xylene, and m/p Xylene), we 

conduct regression analyses on the mean, 50th, 70th, and 90th percentile readings 

at the monitors within county j during year t. The explanatory variable of interest, 

County liquidity gainj,t represents one of the two county-level liquidity shock 

measures defined by Equation (3), where we focus on County liquidity gain1j,t 

and County liquidity gain2j,t. We include a set of county characteristics, Π𝑗,𝑡 , 

namely Ln(Per capita personal income), Ln(Population), Labor market 

participation, and Unemployment to account for time-varying economic 

conditions, and county and year fixed effects, 𝛼𝑗  and 𝛼𝑡  to condition out time-

invariant factors across counties and time specific effects.  
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In this way, we are comparing toxic pollutant concentrations between 

otherwise similar non-shale counties in which banks receive different liquidity 

shocks through their branch networks in shale counties. It is worth emphasizing 

that we reduce the possibility that the results will be affected by changes in the 

demand side emanating from shale discoveries by examining only counties in 

which there are no shale discoveries. Banks in these non-shale counties, however, 

may receive liquidity shocks through their branch networks in shale-counties. We 

estimate Equation (4) using OLS, with standard errors clustered at the county 

level, and report the results in Tables 3 and 4. 

We find that county-level liquidity shocks materially reduce pollution. 

Table 3 reports the results for Top-10 Toxins and each of the five toxic air 

pollutants on the two measures of county-specific liquidity shocks. We provide 

the results on the mean values of each of the pollutants collected by EPA 

monitoring stations during each year in Table 3. As shown, the two county-level 

liquidity shock measures, County liquidity gain1 in columns 1 – 6 and County 

liquidity gain2 in columns 7 – 12, enter negatively and significantly across all of 

the regressions reported in Table 3. Positive liquidity shocks are associated with 

sharp decreases in average toxic air pollution concentrations. The estimated 

economic magnitudes are large. For example, the coefficient estimates from 

column 2 indicate that the annual mean level of Benzene fell by 0.34 (= 

3.155*0.108) in non-shale counties in which banks received a one standard 

deviation (0.108) boost in liquidity from shale oil discoveries via their branches 

in shale counties. This is equivalent to 24% (= 0.34/1.404) of the standard 

deviation of Benzene, mean in our sample. As reported in Online Appendix Table 

A2, these results are robust to examining extreme toxic pollutant concentrations. 

In particular, rather than focusing on the mean or median pollutant readings at 
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monitors, we examine pollution levels at the 75th and 90th percentiles of readings 

at each monitor during each year—and confirm the Table 3 findings.  

Next, we use two strategies to address concerns that the results are driven 

by pre-existing differences in the level or trends of toxic pollutants across. First, 

we redo our baseline county-level analysis while adding to the explanatory 

variables county-level time trends prior to the shale discovery period. 

Specifically, County trends correspond to a full set of interactions between 

county dummies and a time trend variable, so that County trends equals 

𝐶𝐶𝐶𝐶𝐶𝐶 𝑑𝑑𝑑𝑑𝑑𝑐 × 𝑇𝑇𝑇𝑇𝑇𝑇, where 𝐶𝐶𝐶𝐶𝐶𝐶 𝑑𝑑𝑑𝑑𝑑𝑐 represents a vector of 300 

county dummy variables, and Trends equals one in 2000, two in 2001, three for 

2002, and zero for years over the post-shale-discovery period. As shown in Table 

4 columns 1 and 2, both county liquidity gain measures remain negative and 

statistically significant when controlling for a full set of county pre-trends, which 

condition out any differences in pre-trends across counties. 

Our second strategy directly tests whether the level of pollution prior to 

shale developments varies systematically with the degree to which a county is 

exposed to subsequent bank liquidity shocks. We run the following regressions: 

𝑃𝑃𝑃𝑃𝑗,𝑝𝑝𝑝2003  = 𝜆1𝐶𝐶𝐶𝐶𝐶𝐶 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑔𝑔𝑔𝑔𝑗,𝑝𝑝𝑝𝑝2003 + 𝜆2𝑋𝑗,𝑝𝑝𝑝2003 + 𝑒𝑗,              (5) 

where 𝑃𝑃𝑃𝑃𝑗,𝑝𝑝𝑝2003 equals the Top-10 Toxins readings in county j averaged over 

the pre-shale discovery period 2000 – 2002. 𝐶𝐶𝐶𝐶𝐶𝐶 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑔𝑔𝑔𝑔𝑗,𝑝𝑝𝑝𝑝2003 is 

the average exposure of county j to bank liquidity gains during the post-2003 

period, and 𝑋𝑗,𝑝𝑝𝑝2003 includes the same set of county specific controls as above 

(Ln(Per capita personal income), Ln(Population), Labor market participation, 

and Unemployment), averaged over the 2000 – 2002 period.  

As shown in Table 4, we find no relation between pollution during the 

2000-2002 period and bank liquidity shocks in the post-2003 period: County 
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liquidity gain1, post2003 and County liquidity gain2, post2003 enter 

insignificantly when examining toxic emissions before shale discovery. Overall, 

the results in Table 4 suggest that the pollution-reducing effects of positive 

county liquidity shocks cannot be explained by differential pre-trends in pollution.  

 

4.2 County liquidity shocks and county pollution: heterogeneous effects  

To provide additional evidence on whether county-level liquidity shocks 

affect pollution, we assess whether the drop in pollution associated with a given 

bank liquidity shock is greater in counties in which firms have paid more EPA 

fines. Specifically, we conjecture that (1) when firms believe that they face a 

more intense monitoring by the EPA regarding regulatory limits on toxic 

emissions, this increases the expected value of making pollution abatement 

investments and (2) when there are more EPA fines in a county, this tends to 

increase firms’ assessments of EPA monitoring intensity. 6 Thus, we evaluate 

whether easing access to credit has an especially pronounced effect on pollution 

abatement in counties in which there have been more substantial EPA fines. 

To conduct this evaluation, we use a county-level indicator of penalties 

for violating the Clean Air Act (CAA) based on EPA’s compliance and 

enforcement data. For each county in each year, we calculate the total dollar 

amount of CAA penalties over the past five years across plants located in the 

county. We define EPA Penalties as equal to one if the total penalty amount in a 

county is above the median value of county-years in the EPA’s compliance and 

enforcement dataset, and zero otherwise. To test our conjecture above, we 

                                                           
6 For example, with more fines, firms’ perceptions of the likelihood of being fined might increase 
because of increases in the actual intensity with which regulators examine and penalize pollution 
in that county or because of increases in the degree to which firms are aware that regulators are 
monitoring their emissions, i.e., the salience of the environment regulatory regime to the firms. 
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interact EPA Penalties with the county-specific liquidity shock measure, include 

that interaction term in Equation (4), and report the regression results in Table 5.  

We find that the pollution-reducing effects of liquidity shocks are greater 

in counties with a more intense regulatory focus, as measured by EPA Penalties. 

Table 5 provides the results on the mean values for Top-10 Toxins and each of 

the five toxic air pollutants. As can be seen from columns 1 – 6, the interaction of 

county-specific liquidity shocks and penalties for violating CAA, County 

liquidity gain1*EPA Penalties, enters negatively and significantly across the 

annual mean values for Top-10 Toxins and four out of the five toxic parameters. 

Columns 7 – 12 show that the results remain highly robust when using the other 

county-level liquidity shock measure, County liquidity gain2, which further 

differentiates shale counties by whether they experience a shale boom or not. The 

estimated economic magnitudes are large: the coefficients from column 1 in 

Table 5, for example, suggest that the Top-10-Toxins-reducing effects of credit 

supply in counties with a higher amount of penalties for violating the CAA are 

about four times as large as those in counties with a relatively lower amount.  

 

5. Firm-Level Liquidity Shocks and Plant-Level Toxic Emissions  

We now assess the relationship between a firm’s credit conditions and its 

plants’ emissions of toxic pollutants. There are two key differences with the 

county-level analyses. First, the county-level analyses use data from EPA 

monitors. We now examine plant-level toxic emissions, using TRI data. In 

particular, Total Toxic Releases equals the logarithm of the total amount of toxic 

chemicals released (including air emissions, water discharges, underground 

injection, etc.) from each plant in a year. Second, the county-level analyses 

measure credit shocks and pollution in the same county, i.e., Poll and County 
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liquidity gain are measured in the same non-shale county, where County liquidity 

gain measures the degree to which banks in the non-shale county receive 

liquidity shocks through their branch networks in shale counties. In our plant-

level analyses, we examine credit shocks to the plant’s headquarters, which is 

typically located in a different county from the plant.7 That is, we compute the 

degree to which banks in the county where the plant’s headquarters is located 

receive liquidity shocks through branch networks in other counties. We omit all 

plants and headquarters located in shale counties—and in robustness checks we 

also omit plants and headquarters located in counties neighboring shale counties. 

 

5.1 Shale liquidity shocks and plant emissions: Core analyses 

We first evaluate how plants adjust their toxic emissions when banks 

operating in the plants’ headquarters counties—Headquarters(county)—receive 

shale liquidity shocks in their branches in other counties. We estimate the 

following regressions at the plant-year level.   

𝑇𝑇𝑇𝑇𝑇 𝑡𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑝,𝑖,𝑡 = 𝛽1𝐹𝐹𝐹𝐹_𝑐𝑐𝑐𝑐𝑐𝑐 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑔𝑔𝑔𝑔𝑖,ℎ𝑑𝑑𝑑𝑑𝑑𝑑,𝑡 + 𝛽2′Π𝑝,𝑡 

                               + 𝛼𝑝 + 𝛼𝑐𝑐𝑐𝑐,𝑡 + 𝛼𝑖𝑖𝑖,𝑡 + 𝛼ℎ𝑑𝑑𝑑𝑑,𝑡 + 𝜀𝑝,𝑖,𝑡,       (6) 

where the dependent variable, 𝑇𝑇𝑇𝑇𝑇 𝑡𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑝,𝑖,𝑡 , is the log amount of 

toxic chemical releases (measured in pounds) by plant p located in county cnty, 

affiliated with firm i in industry ind, headquartered in county hdqcnty and state 

hdqst in year t. 𝐹𝐹𝐹𝐹_𝑐𝑐𝑐𝑐𝑐𝑐 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑔𝑔𝑔𝑔𝑖,ℎ𝑑𝑑𝑑𝑑𝑑𝑑,𝑡  is one of the two 

measures of the extent to which the banks operating in county hdqcnty receive 

positive liquidity shocks through their branch networks in other counties, and is 

defined above in Section 3. Plant-specific traits (Π𝑝,𝑡) include Total sales and 
                                                           
7 In particular, 77,951 observations are in a different county from the plant’s headquarters, and 
16,353 observations are in the same county as its headquarters. 
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Sales growth. We include plant, county-year, industry (2-digit SIC)-year, and 

headquarters (state)-year fixed effects, 𝛼𝑝 , 𝛼𝑐𝑐𝑐𝑐,𝑡 , 𝛼𝑖𝑖𝑖,𝑡 , and 𝛼ℎ𝑑𝑑𝑑𝑑,𝑡 , to 

condition out any time-invariant differences across plants and time-varying 

differences across (plants’) counties, industries and (headquarters’) states. We 

estimate the model using OLS, with standard errors clustered at the firm level. To 

the extent that companies effectively devote more resources to limiting toxic 

emissions when they receive better credit conditions, we expect 𝛽1 < 0. 

We interpret these shale liquidity shocks to banks in the firm’s 

headquarters-county as changes in the credit conditions facing the firm based on 

the assumption that firms tend to obtain loans from geographically close banks. 

Extensive research support this assumption, e.g., Petersen and Rajan (2002), 

Berger et al. (2005), Agarwal and Hauswald (2010), and Berger, Bouwman, and 

Kim (2017). For example, Petersen and Rajan (2002) find that the median 

distance between bank and borrower is 4 miles.  

It is worth noting that we include county-year fixed effects throughout the 

analysis. This addresses concerns that our results are driven by economic or 

regulatory variations across counties, such as local credit demand shocks, local 

environmental regulations, and other omitted variables that might affect pollution 

emissions. We can include county-year effects because not all plants located in a 

county have their headquarters in the same county, which enables us to 

distinguish the treatment effects from local economic conditions.  

We discover that plants pollute less after banks in the county in which its 

parent firm is headquartered receive positive liquidity shocks. As shown in 

columns 1 – 4 of Table 6, the key explanatory variable—the degree to which 

banks in the county in which a firm is headquartered receive positive liquidity 

shocks (i.e., Firm-county liquidity gain1, or Firm-county liquidity gain2)—enters 
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negatively and significantly in all specifications. These results suggest that 

improvements in firms’ access to finance lead the firm’s plants to emit less toxic 

pollutants. These results are unlikely to be driven by (a) changes in local 

economic conditions triggered by shale development because we exclude both 

plants in shale counties and firms headquartered in shale counties, and (b) 

changes in local economic conditions due to other omitted factors because we 

include a full set of county-year fixed effects. 

To interpret the economic magnitudes of the estimated coefficients, 

consider two otherwise similar plants, except that one plant has its parent firm 

headquartered in a county that receives a positive, sample mean liquidity shock 

(i.e., Firm-county liquidity gain1 = 0.05 as shown in Table 1 Panel B), while the 

other is headquartered in a county that does not receive the shock (i.e., Firm-

county liquidity gain1 = 0). The coefficient estimates from column 1 of Table 6 

indicate that toxic emissions from the “shocked” plant would be 6% (= 0.05*1.19) 

lower than those of the other plant.  

We were concerned that activities in counties that neighbor (are 

geographically adjacent to) shale counties could drive our results and lead to 

spurious results. Thus, we repeat the analyses, but further exclude plants and 

firms headquartered in counties adjacent to shale counties. As shown in columns 

5 – 8, all of the results hold.   

 

5.2 Liquidity shocks and plant pollution: differentiating by bank dependence 

We extend this examination by assessing whether the pollution-reducing 

effects of liquidity shocks to banks in a plant’s headquarters-county vary across 

firms in a predictable manner. If liquidity shocks to banks in the headquarters-

county affect firms by easing credit constraints, then the impact should be 
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stronger among firms that rely more heavily on local banks. To measure the 

extent to which firms rely on local banks for credit, we differentiate between 

privately-held or publicly-listed firms. Based on a considerable body of research 

(e.g., Pagano, Panetta, and Zingales 1998; Saunders and Steffen 2011; Borisov, 

Ellul, and Sevilir 2017), we assume that publicly-listed firms have, on average, 

greater access to credit beyond banks operating in their headquarters-county than 

privately-held firms. We test whether the impact of liquidity shocks on plants’ 

toxic emissions is larger among plants affiliated with privately-held firms than 

among plants affiliated with publicly-listed firms. 

Consistent with this view, we find larger pollution-reducing effects from 

positive bank liquidity shocks among plants affiliated with privately-held firms. 

As shown in Table 7, the key explanatory variable, which is either Firm-county 

liquidity gain1 or Firm-county liquidity gain2, enters negatively and significantly 

among plants affiliated with privately-held firms but enters insignificantly when 

examining publicly-listed firms.  

 

5.3 Instrumental variable estimation 

In this subsection, we conduct 2SLS regressions where the intermediating 

variable is the change in deposits. This allows us to (a) examine whether a firm’s 

headquarters-county exposure to shale discoveries influences its plant pollutant 

emissions through boosting liquidity of banks operating in that county, and (b) 

further assess the economic magnitude of the impact of liquidity shocks—

measured as the percentage change of bank deposits—on pollution.  

To do this, we calculate a county-specific measure of deposit growth. 

Specifically, for each county in each year, County-bank deposit growth equals the 

weighted average of deposit growth across banks in the county, where we weight 
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each bank by its market share in the county. We then instrument this County-

bank deposit growth with measures of county exposure to shale development, 

County liquidity gains 1 and County liquidity gains 2. We first note that both 

county liquidity gains measures are strongly, positively correlated with County-

bank deposit growth. As shown in Table 8 Panel B, both County liquidity gains 1 

and County liquidity gains 2 enter the first-stage regressions positively and 

statistically significantly. In addition, the F-statistics of the weak instrument test 

range from 50 – 61, further rejecting the null hypothesis that our instrument is 

irrelevant to the instrumented variable. 

The second-stage results reported in Table 8 Panel A suggest that positive 

shocks to bank liquidity in a county ease credit conditions facing firms 

headquartered in the county, and this easing of firm credit constraints reduce 

toxic emissions by the firm’s plants. The IV estimates suggest an economically 

large effect. For example, the estimated coefficients from column 1 of Panel A 

indicate that if bank deposits in a county grow by 1 percentage points, the plant 

toxic pollution emissions would drop by about 8%.8 

 

6. Toxic Emissions and Adverse Liquidity Shocks  

In this section, we employ our third and fourth identification strategies 

and assess the impact of adverse liquidity shocks on pollution. While the earlier 

sections focused on positive liquidity shocks triggered by shale discoveries, this 

section uses two strategies for analyzing the impact of the negative liquidity 

shocks triggered by the global financial crisis on toxic emissions.  

 

6.1 Adverse liquidity shocks: Differentiating by firms’ debt maturity structure 
                                                           
8 Online Appendix Table A6 reports 2SLS regressions results at the firm-level, which yield 
similar results to the plant-level results discussed above.   
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To obtain firm-specific adverse liquidity shocks, we examine the 

tightening of credit conditions associated with the onset of the global financial 

crisis, while differentiating firms by their debt maturity structures. Intuitively, to 

the extent that firms with more debt maturing in 2008 faced greater liquidity 

constraints when the financial crisis hit—as found by Acharya and Mora (2015), 

we can use the maturing debt ratio at the onset of the crisis as a proxy for the 

impact of the financial crisis on firms’ credit constraint. 9  Thus, we follow 

Almeida et al. (2012), and Cohn and Wardlaw (2016) and exploit heterogeneity 

in the maturity structure of firms’ debt at the onset of the financial crisis in late 

2007. In particular, we differentiate firms by the amount of debt due in one year, 

measured at the end of the 2007 fiscal year as a proportion of firm assets 

(Maturing debt as of 2007). Since firms were unlikely to have anticipated the 

advent of the crisis when scheduling their debt maturity before the crisis, we 

exploit firms’ pre-determined debt structure as an exogenous source of variation 

in the severity of the credit crunch following the onset of the crisis and examine 

the impact of this credit tightening on plants’ emissions of toxic pollutants.  

We employ the following model specification. 

𝑇𝑇𝑇𝑇𝑇 𝑡𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑝,𝑖,𝑡 = 𝜃1𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑑𝑑𝑑𝑑 𝑎𝑎 𝑜𝑜 2007𝑖 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝑡 + 𝜃2′𝜅𝑖,𝑡 

+ 𝛼𝑝 + 𝛼𝑐𝑐𝑐𝑐,𝑡 + 𝛼𝑖𝑖𝑖,𝑡 + 𝛼ℎ𝑑𝑑𝑑𝑑,𝑡 + 𝜀𝑝,𝑖,𝑡,            (7) 

where the dependent variable, 𝑇𝑇𝑇𝑇𝑇 𝑡𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑝,𝑖,𝑡 , is the log amount of 

toxic chemical releases by plant p located in county cnty, affiliated with firm i in 

industry ind, headquartered in state hdqst in year t. Maturing debt as of 2007i is 

the amount of debt due in one year, measured at the end of fiscal year 2007 as a 

                                                           
9 In a different setting that illustrates the importance of leverage and firm’s network of plants, 
Giroud and Mueller (2016, 2019) show that plants of highly levered firms respond more strongly 
to declines in local consumer demands, which spill over to geographically distant regions through 
firms’ internal networks. 
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proportion of firm i’s assets. Crisis equals one in 2008 and after, and otherwise 

equals zero. Firm-specific traits (𝜅𝑖,𝑡) include Total sales, Sales growth, and one-

year-lagged Profitability. Similar to Equation (6) above, we include plant, 

county-year, industry (2-digit SIC)-year, and headquarters (state)-year fixed 

effects, 𝛼𝑝 , 𝛼𝑐𝑐𝑐𝑐,𝑡 , 𝛼𝑖𝑖𝑖,𝑡 , and 𝛼ℎ𝑑𝑑𝑑𝑑,𝑡 , to condition out any time-invariant 

differences across plants and time-varying differences across (plants’) counties, 

industries and (headquarters’) states. We estimate the model using OLS, with 

standard errors clustered at the firm level. Our variable of interest, the interaction 

term—Maturing debt as of 2007*Crisis—represents an exogenous change to the 

liquidity conditions facing each firm, and 𝜃1 captures the impact of these shock 

to liquidity conditions on associated plant emissions of toxic pollutants. We 

conduct the analyses over the 2006-2008 period and the 2006-2009 period, as the 

crisis might have had enduring effects on the liquidity conditions and hence the 

toxic emissions of firms and plants. 

As shown in Table 9, when firms receive an adverse liquidity shock, their 

associated plants tend to increase toxic emissions. Whether examining the 2006-

2008 or 2006-2009 period, Maturing debt as of 2007*Crisis enters positively and 

significantly. The estimates suggest an economically large effect. The column 1 

estimates indicate that a one standard deviation increase in a firm’s maturing debt 

ratio would boost toxic pollution emissions by about 9%. Furthermore, neither 

the estimated coefficient nor its statistical significance on the interaction term 

varies much when including or excluding the control for firm sales, sales growth, 

and lagged profitability. Thus, the positive impact of the adverse liquidity shock 

on toxic emissions does not simply reflect firm performance. Furthermore, the 

results hold when including plant, county-year, industry-year and (headquarters) 

state-year fixed effects. These findings are consistent with the view that a 
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tightening of credit conditions induces firms to devote fewer resources toward 

pollution abatement, boosting plant emissions of toxic pollutants. 

 

6.2 Bank holdings of private MBS 

For our fourth identification strategy, we examine the tightening of credit 

conditions associated with the global financial crisis, while differentiating banks 

by their holdings of private-label MBSs. Research suggests that banks holding 

more private-label MBSs were subject to greater losses and risks during the 

financial crisis, which was triggered by the collapse of the housing market (e.g., 

Agarwal et al. 2012; Ellul and Yerramilli 2013; Nadauld, and Stulz 2013). Thus, 

we use the interaction between MBS exposure and the crisis as a bank-specific 

measure of a banks’ adverse liquidity shock. After first showing that banks with 

greater exposure to private-label MBSs contracted their supply of credit more 

than other banks, we (1) construct measures of each county’s exposure to this 

negative bank liquidity shocks based on the banks operating in the county, and (2) 

use these measures to evaluate the impact of tightening credit conditions in a 

firm’s headquarters-county on toxic emissions by the firm’s plants. 

We use the following specification to examine whether pre-crisis 

exposure to private-label MBSs influences bank profits and supply of credit.  

∆𝑌𝑏,2007−2010  = 𝜌1𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑀𝑀𝑀𝑏,2007 + 𝜌2′𝑋𝑏,2007 + 𝑒𝑏,                 (8) 

where the dependent variable, ∆𝑌𝑏,2007−2010, equals changes in C&I Loan growth 

(or Return on assets) for bank b from 2007 to 2010. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑀𝑀𝑀𝑏,2007 is the 

total value of private-label mortgage-backed securities held by bank b, scaled by 

book value of total assets, measured as of 2007. 𝑋𝑏,2007 denotes a set of bank-

specific controls as above (Total asset, Deposit/Total assets, Liquid assets/Total 

assets, Mortgages/Total assets, C&I loans/Total assets, Loan commitments/Total 
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assets, and Letters of credits/Total assets), measured as of 2007. We report the 

estimation results in Table 10. 

As shown in Table 10 Panel B, banks that held a larger ratio of private-

label MBSs to total assets at the onset of the financial crisis experienced a greater 

contraction of profits and C&I loan growth. Private MBS2007 enters the 

regressions of ΔROA and ΔC&I Loan Growth negatively and significantly, 

suggesting that larger holdings of private MBSs lead banks to suffer more profits 

losses and credit supply reductions. The results hold whether using periods over 

2007 – 2010 (columns 1 – 4) or 2007 – 2009 (columns 5 – 8). The economic 

impact is large. The coefficient estimates from column 2 of Panel B indicate that 

banks with an average ratio of MBSs to total assets (i.e., Private MBS2007 = 0.023) 

would reduce C&I loans by 3 percentage points more than banks that do not hold 

any private MBSs. This is large given that the median value of the C&I loan 

growth rate as of 2007 was 8 percentage points. 

After confirming that holdings of MBS have a material negative impact 

on bank credit supply, we next construct a measure of county-specific (and thus 

firms’ headquarters-county) exposure to this negative bank liquidity shock based 

on banks operating in the county, and use this measure to evaluate the impact of 

tightening credit conditions in a firm’s headquarters-county on toxic emissions 

by the firm’s plants. We construct the county-specific measure using a similar 

strategy to our earlier analyses. For each county, we compute county exposure to 

MBS-induced liquidity shocks as the weighted average of bank-specific Private 

MBS2007 across banks operating in the county as of 2007, where we weight each 

bank by its market share in the county. Similar to our strategy earlier, for each 

plant, we assign the values of MBS exposure associated with banks in the county 

in which its parent firm is headquartered. We refer to this measure as Firm-
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county exposure to private MBS2007. We estimate the following cross-section 

model to assess the impact of tightening credit conditions on toxic emissions. 

∆𝑇𝑇𝑇𝑇𝑇 𝑡𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑝,𝑖,2007−2010 = 𝜃1𝐹𝐹𝐹𝐹_𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑀𝑀𝑀𝑖,ℎ𝑑𝑑𝑑𝑑𝑑𝑑,2007 

+ 𝜃2′𝛱𝑝,2007 + 𝛼𝑐𝑐𝑐𝑐 + 𝛼𝑖𝑖𝑖 + 𝛼ℎ𝑑𝑑𝑑𝑑 + 𝑒𝑝,𝑖,     (9) 

where ∆𝑇𝑇𝑇𝑇𝑇 𝑡𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑝,𝑖,2007−2010  is the change of the log amount of 

toxic chemical releases by plant p located in county cnty, affiliated with firm i in 

industry ind, headquartered in county hdqcnty and state hdqst over the period 

2007 – 2010. 𝐹𝐹𝐹𝐹_𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑀𝑀𝑀𝑖,ℎ𝑑𝑑𝑑𝑑𝑑𝑑,2007  measures the extent to 

which banks operating in county hdqcnty were exposed to private-label MBS as 

of 2007. Plant-specific traits (Π𝑝,2007 ) include Total sales and Sales growth, 

measured as of 2007. We include county, industry, and headquarters (state) fixed 

effects to condition out any differences across (plants’) counties, industries and 

(headquarters’) states. We estimate the model using OLS, with standard errors 

clustered at the firm level. 

Consistent with previous findings, the results in Table 11 suggest that 

when firms receive a negative shock to their credit conditions, their plants tend to 

emit more toxic pollutants. Firm-county exposure to private MBS2007 enters 

positively and significantly in all columns. The coefficient estimates from 

column 1 indicate that if the pre-crisis MBS holdings of banks operating in a 

firm’s headquarters-county increase by one standard deviation, toxic emissions 

by the firm’s plants would increase by about 13%. The results hold whether 

including or excluding the control for firm sales, sales growth, and whether using 

bank MBS holdings as of 2007 or 2006. Furthermore, the results hold when 

including county, industry and (headquarters) state fixed effects. These findings 

confirm the view that an adverse shock to firms’ credit conditions induces them 
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to devote fewer resources toward pollution abatement, leading to an increase in 

plant toxic emissions. 

 

7. Conclusion 

In this study, we evaluate the impact of changes in the credit conditions 

facing firms on their plants’ emissions of toxic pollutants. To make this 

assessment, we use four empirical strategies to identify shocks to the credit 

conditions facing firms. The first two strategies begin with the technological 

breakthroughs that triggered shale development in several counties across the U.S. 

and corresponding liquidity windfalls at bank branches in those counties. We 

construct measures of the degree to which banks in non-shale counties receive 

liquidity shocks through their branch networks in shale counties and implement 

the first two empirical strategies. We evaluate (1) how these shocks to county 

credit conditions influence the emissions of toxic pollutants in those counties, 

and (2) how these shocks to a firm’s headquarters county influence its plants’ 

emissions of toxic pollutants.  

The next two identification strategies focus on adverse credit shocks 

triggered by the global financial crisis. First, we differentiate firms by the ratio of 

maturing debt at the onset of the crisis to total assets and use this as a proxy for 

the adverse impact of the financial crisis on firms’ credit constraints. We then 

evaluate whether firms with higher debt maturity ratios emitted more toxic 

pollutants during and after the crisis. Second, we differentiate banks by their 

holdings of private-label MBSs right before the crisis and use MBS exposure as a 

proxy for the adverse impact of the financial crisis on banks’ supply of credit. 

This provides a measure of the degree to which the financial crisis tightens credit 
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offered by banks in each county. We then evaluate the impact of tightening credit 

conditions in a firm’s headquarters-county on toxic emissions by the firm’s plants. 

Across all four empirical strategies, we find that finance exerts a strong 

influence on pollution. Shocks that ease firms’ credit constraints induce a sharp 

reduction in toxic emissions, and shocks that tighten credit constraints trigger 

material increases in toxic pollutants. This work highlights that credit conditions 

shape firms’ decisions regarding the release of toxic pollutants.  
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Table 1 Summary Statistics 

Panel A: County Sample 
Variable N Mean SD P25 P50 P75 
County-Specific Liquidity Shock        

County liquidity gain1 2225 0.067 0.108 0.000 0.014 0.093 
County liquidity gain2 2225 0.060 0.099 0.000 0.010 0.078 

Hazardous Pollutant Concentration       
Top-10 Toxins, mean 2225 0.027 0.018 0.016 0.024 0.033 
Benzene, mean 2209 1.846 1.404 1.026 1.505 2.187 
Toluene, mean 2149 4.434 4.054 1.926 3.257 5.480 
Ethylbenzene, mean 2123 0.680 0.661 0.276 0.504 0.883 
o-Xylene, mean 2098 0.782 0.791 0.284 0.570 1.003 
m/p Xylene, mean 2037 2.038 2.132 0.726 1.445 2.585 

County Characteristics       
Ln(Per capita personal income) 2225 10.484 0.291 10.298 10.463 10.650 
Ln(Population) 2225 12.625 1.280 11.867 12.748 13.581 
Labor market participation 2225 0.506 0.049 0.481 0.511 0.537 
Unemployment 2225 0.064 0.027 0.045 0.057 0.078 
EPA Penalties, in thousand dollar 2225 1305.773 3833.652 15.625 139.620 758.174 

 
 
Panel B: Toxic Emission Plants 
  N Mean SD P25 P50 P75 
Positive Shock       

Firm-county liquidity gain1 94304 0.050 0.089 0.000 0.009 0.058 
Firm-county liquidity gain2 94304 0.045 0.083 0.000 0.006 0.050 
Total toxic releases 94304 7.897 3.994 5.583 8.603 10.664 
Sales 62380 16.979 1.681 16.042 17.120 18.064 
Sales growth 62380 0.003 0.263 -0.035 0.001 0.055 

Negative Shock, Maturing Debt as of 2007       
Debt maturing in one year as of 2007  10577 0.042 0.056 0.005 0.023 0.053 
Crisis 10577 0.484 0.500 0 0 1 
Total toxic releases 10577 7.111 4.492 3.367 7.842 10.456 
Sales 10560 8.845 1.509 7.814 8.931 9.948 
Sales growth 10560 0.008 0.183 -0.070 0.051 0.114 
Profitability 10560 0.060 0.073 0.033 0.062 0.091 
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Panel C: Banks 
  N Mean SD P25 P50 P75 
Bank liquidity gain1 105579 0.080 0.367 0 0 0 
Bank liquidity gain2 105579 0.049 0.313 0 0 0 
Bank liquidity gain1, exposed only 14202 0.593 0.834 0.024 0.153 0.834 
Bank liquidity gain2, exposed only 14202 0.362 0.785 0.000 0.000 0.068 
Deposit growth 105579 0.085 0.172 0.000 0.051 0.118 
C&I Loan growth 102555 0.069 0.332 -0.096 0.048 0.203 
Total assets 105579 11.776 1.284 10.908 11.647 12.471 
Capital asset ratio 105579 0.111 0.051 0.084 0.098 0.121 
Deposit/Total assets 105579 0.824 0.093 0.796 0.847 0.883 
Liquid assets/Total assets 105579 0.061 0.058 0.028 0.042 0.070 
Mortgages/Total assets 105579 0.422 0.181 0.295 0.428 0.555 
C&I loans/Total assets 105579 0.094 0.071 0.044 0.078 0.125 
Loan commitments/Total assets 105579 0.101 0.083 0.045 0.083 0.135 
Letters of credits/Total assets 105579 0.004 0.007 0.000 0.002 0.005 
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Table 2 Positive Liquidity Shocks and Bank Deposit & Loan Growth 

This table presents the bank-year regressions of bank deposit growth on liquidity shock from the shale-drilling 
activities from 2000 – 2013. The dependent variable is deposit growth in columns 1 and 2, and C&I loan growth 
in columns 3 and 4. For each bank in a year, we construct two measures of shale liquidity shocks, Bank liquidity 
gain1 and Bank liquidity gain2. Both measures capture the extent to which each bank receives liquidity gains 
resulting from shale development through its branch networks across counties. Appendix Table A1 provides 
detailed variable definitions. Bank specific controls include Total asset, Capital asset ratio, Deposit/Total assets, 
Liquid assets/Total assets, Mortgages/Total assets, C&I loans/Total assets, Loan commitments/Total assets, and 
Letters of credits/Total assets, all measured at the beginning of each year. We include Bank and Year fixed 
effects throughout the table. P-values are calculated using heteroscedasticity robust standard errors clustered at 
the bank level, and reported in parentheses. *,**, and *** indicate significance at 10%, 5%, and 1%. 

  Deposit Growth C&I Loan Growth 

 (1) (2) (3) (4) 
Bank liquidity gain1 0.031***   0.040***   

 (0.000)  (0.000)  
Bank liquidity gain2  0.028***  0.034*** 

  (0.000)  (0.000) 
Total assets (lag) -0.160*** -0.161*** -0.170*** -0.170*** 

 (0.000) (0.000) (0.000) (0.000) 
Capital asset ratio (lag) 0.983*** 0.984*** 1.407*** 1.409*** 

 (0.000) (0.000) (0.000) (0.000) 
Deposit/Total assets (lag) -0.626*** -0.626*** -0.128*** -0.127*** 

 (0.000) (0.000) (0.001) (0.001) 
Liquid assets/Total assets (lag) -0.079*** -0.080*** 0.012 0.011 

 (0.000) (0.000) (0.742) (0.745) 
Mortgages/Total assets (lag) 0.084*** 0.084*** -0.176*** -0.176*** 

 (0.000) (0.000) (0.000) (0.000) 
C&I loans/Total assets (lag) 0.241*** 0.243*** -2.505*** -2.502*** 

 (0.000) (0.000) (0.000) (0.000) 
Loan commitments/Total assets (lag) 0.451*** 0.451*** 0.675*** 0.676*** 

 (0.000) (0.000) (0.000) (0.000) 
Letters of credits/Total assets (lag) 0.336** 0.338** 1.142*** 1.145*** 

 (0.019) (0.019) (0.000) (0.000) 
BHC Fixed Effects Yes Yes Yes Yes 
Year Fixed Effects Yes Yes Yes Yes 
Observations 105,579 105,579 102,555 102,555 
R-squared 0.547 0.546 0.290 0.290 
# of banks 10617 10617 10217 10217 
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Table 3 Positive Liquidity Shocks and Hazardous Air Pollution, County-Level Analyses Using Data from EPA Pollution Monitoring 
Stations 

This table reports the regression results of the effects of county-level liquidity shocks on the concentration of hazardous airborne pollutants based on EPA monitoring stations. 
Our county-year sample includes only non-shale counties, i.e., those counties with no local shale development. The dependent variable is the arithmetic mean of each of the 
air pollutants collected by EPA monitoring stations during each year. We report the results on the average standardized density of top 10 most monitored pollutants, and each 
of the five most monitored hazardous pollutants, namely, Benzene, Toluene, Ethylbenzene, o-Xylene, and m/p Xylene. The key explanatory variable is one of the county-
specific, time-varying measures on the extent to which banks in a county are exposed to shale development via its branch located in shale-boom counties, i.e., County 
liquidity gain1 or County liquidity gain2. For each county in a year, we calculate its banks’ shale liquidity shock by taking the average of bank-specific shale liquidity shock 
(i.e., Bank liquidity gain1 or Bank liquidity gain2), weighted each bank by its local market share in that particular county. We provide detailed variable definitions in 
Appendix Table A1. County controls include Ln(Per capita personal income), Ln(Population), Labor market participation, and Unemployment. We include county and year 
fixed effects across columns. P-values are calculated using heteroscedasticity robust standard errors clustered at the county level, and reported in parentheses. *,**, and *** 
indicate significance at 10%, 5%, and 1%. 

  Top-10 
Toxins Benzene Toluene Ethylbenz

ene o-Xylene  m/p 
Xylene 

Top-10 
Toxins Benzene Toluene Ethylbenz

ene o-Xylene  m/p 
Xylene 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 
County liquidity gain1 -0.020** -3.155*** -5.425*** -0.595** -0.690** -2.476***       

 (0.015) (0.000) (0.000) (0.048) (0.044) (0.008)       
County liquidity gain2       -0.021** -3.313*** -5.660*** -0.583* -0.635* -2.434** 

       (0.010) (0.000) (0.000) (0.071) (0.083) (0.015) 
County Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
County FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 2,225 2,209 2,149 2,123 2,098 2,037 2,225 2,209 2,149 2,123 2,098 2,037 
R-squared 0.661 0.672 0.681 0.669 0.689 0.702 0.661 0.671 0.681 0.669 0.688 0.702 
# of counties 300 300 288 287 285 274 300 300 288 287 285 274 
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Table 4 Positive Liquidity Shocks and County-Level Hazardous Air Pollution, Pre-
Trends 

This table reports the regression results of the effects of county-level liquidity shocks on the concentration of 
hazardous airborne pollutants based on EPA monitoring stations, while controlling for differential trends within 
counties. In columns 1 & 2, County trends correspond to a full set of interactions between county dummy and 
the time trends variable, 𝐶𝐶𝐶𝐶𝐶𝐶 𝑑𝑑𝑑𝑑𝑑𝑐 ×  𝑇𝑇𝑇𝑇𝑇𝑇 , where 𝐶𝐶𝐶𝐶𝐶𝐶 𝑑𝑑𝑑𝑑𝑑𝑐  represents a vector of 300 
county dummy variables, and Trends is a time trend indicator that equals one in 2000, two in 2001, three for 
2002, and zero for years over the post-shale-discovery period. The dependent variable in columns 1 & 2 is the 
average standardized values of the top 10 pollutants collected by EPA monitoring stations during each year. The 
key explanatory variable is one of the county-specific, time-varying measures on the extent to which banks in a 
county are exposed to shale development via its branch located in shale-boom counties, i.e., County liquidity 
gain1 or County liquidity gain2. County controls in columns 1 & 2 include Ln(Per capita personal income), 
Ln(Population), Labor market participation, and Unemployment. In columns 3 & 4, we regress county-level 
pollutants over the pre-shale discovery period, 2000-2002, on county exposure to bank liquidity shocks since 
2003. The dependent variable is the average standardized values of the top 10 pollutants collected by EPA 
monitoring stations during the pre-shale period, 2000 – 2002. The key explanatory variable is County liquidity 
gain1 (or County liquidity gain2) averaged over the post-shale period, 2003 – 2013. County controls in columns 
3 & 4 include Ln(Per capita personal income), Ln(Population), Labor market participation, and Unemployment 
averaged over the pre-shale period. We provide detailed variable definitions in Appendix Table A1. We include 
county and year fixed effects across columns. P-values are calculated using heteroscedasticity robust standard 
errors clustered at the county level, and reported in parentheses. *,**, and *** indicate significance at 10%, 5%, 
and 1%. 

 Top-10 Toxins Top-10 Toxins, pre2003 

 Controlling for Pre-trends Pre-shale Pollution and Post-
shale Liquidity Shocks 

 (1) (2) (3) (4) 
County liquidity gain1 -0.018**    

 (0.029)    
County liquidity gain2  -0.018**   

  (0.028)   
County liquidity gain1, post2003   0.007  
   (0.773)  
County liquidity gain2, post2003    0.007 
    (0.776) 
County Controls Yes Yes Yes Yes 
County Trends Yes Yes No No 
County FE Yes Yes No No 
Year FE Yes Yes No No 
Observations 2,225 2,225 157 150 
R-squared 0.728 0.728 0.289 0.283 
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Table 5 Heterogeneity Effects of Positive Liquidity Shocks on County-Level Hazardous Air Pollution, by EPA Penalties 

This table reports the heterogeneous effects of county-level liquidity shocks on hazardous air pollutants concentration from EPA monitoring stations, while differentiating 
counties by the intensity of EPA penalties. Consistent with the previous tables, our county-year sample includes only non-shale counties, i.e., counties with no local shale 
development. EPA Penalties is an indicator that equals one if the dollar amount of penalties imposed on a county’s establishments for violating Clean Air Act over the past 
five years are greater than the sample median value, and zero otherwise. The dependent variable is the mean values of each of the air pollutants concentration collected by 
EPA monitoring stations during each year. We report the results on the average standardized density of top 10 most monitored pollutants, and each of the five most monitored 
hazardous pollutants, namely, Benzene, Toluene, Ethylbenzene, o-Xylene, and m/p Xylene. The key explanatory variable is one of the county-specific, time-varying 
measures on the extent to which banks in a county are exposed to shale development via its branch located in shale-boom counties, i.e., County liquidity gain1 or County 
liquidity gain2. We provide detailed variable definition in Appendix Table A1. County controls include Ln(Per capita personal income), Ln(Population), Labor market 
participation, and Unemployment. We include county and year fixed effects across columns. P-values are calculated using heteroscedasticity robust standard errors clustered 
at the county level, and reported in parentheses. *,**, and *** indicate significance at 10%, 5%, and 1%. 

 
Top-10 
Toxins Benzene Toluene Ethylbenz

ene o-Xylene  m/p 
Xylene 

Top-10 
Toxins Benzene Toluene Ethylbenz

ene o-Xylene  m/p 
Xylene 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 
County liquidity gain1 
* EPA Penalties -0.019*** -1.167** -2.364 -0.777*** -0.709** -2.655***       

 (0.006) (0.032) (0.171) (0.005) (0.042) (0.003)       
County liquidity gain1 -0.006 -2.321*** -3.782** -0.023 -0.183 -0.583       

 (0.419) (0.000) (0.032) (0.931) (0.544) (0.458)       
County liquidity gain2 
* EPA Penalties       -0.020*** -1.202** -2.584 -0.850*** -0.753* -2.865*** 

       (0.007) (0.047) (0.180) (0.007) (0.052) (0.004) 
County liquidity gain2       -0.006 -2.446*** -3.881** 0.048 -0.097 -0.392 

       (0.445) (0.000) (0.045) (0.865) (0.767) (0.648) 
EPA Penalties Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
County Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
County FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 2,225 2,209 2,149 2,123 2,098 2,037 2,225 2,209 2,149 2,123 2,098 2,037 
R-squared 0.663 0.673 0.683 0.671 0.690 0.705 0.663 0.672 0.682 0.671 0.690 0.704 
# of counties 300 300 288 287 285 274 300 300 288 287 285 274 
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Table 6 Positive Liquidity Shocks and Plant Toxic Releases, Plant-Level Analyses 

This table reports the plant-year regressions of a plant’s releases of toxic pollutants on its headquartered county liquidity shocks. Columns 1 – 4 exclude plants and firms in 
counties with shale development activities (i.e., shale counties), and columns 5 – 8 further exclude plants and firms in counties adjacent to a shale county. The dependent 
variable is the logarithm of the total volume of toxic chemical releases in all columns. The key explanatory variable is one of the firm-county measures on the extent to which 
banks in a plant’s headquarters county are exposed to shale development via their branch located in shale counties, i.e., Firm-county liquidity gain1 or Firm-county liquidity 
gain2. Plant controls include Sales and Sales growth. We provide detailed definitions in Appendix Table A1. We include Plant, County-year, Industry-year, and Headquarters 
(State)-year fixed effects in all specifications. P-values are calculated using heteroscedasticity robust standard errors clustered at the firm level, and reported in parentheses. 
*,**, and *** indicate significance at 10%, 5%, and 1%. 

 Total Toxic Releases 

 

Excl. firms & plants located in  
shale counties 

Excl. firms & plants located in  
shale & neighboring counties 

 
(1) (2) (3) (4) (5) (6) (7) (8) 

     
        

Firm-county liquidity gain1 -1.192** -1.745**     -1.409** -2.455***   
 (0.038) (0.017)   (0.049) (0.007)   

Firm-county liquidity gain2   -1.193** -1.699**   -1.534** -2.568*** 

   (0.045) (0.025)   (0.042) (0.008) 
Sales  0.029  0.029  0.016  0.017 

  (0.227)  (0.223)  (0.515)  (0.508) 
Sales growth  0.005  0.005  -0.007  -0.007 

  (0.885)  (0.892)  (0.853)  (0.845) 
Plant fixed effects Yes Yes Yes Yes Yes Yes Yes Yes 
County-year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes 
Industry-year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes 
Headquarters(State)-year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 94,304 62,380 94,304 62,380 75,972 51,022 75,972 51,022 
R-squared 0.909 0.919 0.909 0.919 0.914 0.924 0.914 0.924 
# of plants 12296 8636 12296 8636 11349 7956 11349 7956 
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Table 7 Positive Liquidity Shocks and Plant Toxic Releases, Heterogeneity by Bank Dependence 

This table reports the regressions of a plant’s releases of toxic pollutants on its headquartered county liquidity shocks, while differentiating plants by the extent to which their 
parent firms have access to outside sources of financing, and thus their reliance on banks within the headquarters-county. We exclude plants and firms in shale counties. We 
use the status of private or publicly traded to proxy for a firm’s dependence on bank credit within the headquarters-county. Columns with the odd number use a sample of 
plants owned by private firms, and columns with the even number focus on plants affiliated with publicly listed firms. The dependent variable is the logarithm of the total 
volume of toxic chemical releases in all columns. The key explanatory variable is one of the firm-county measures on the extent to which banks in a firm’s headquarters 
county are exposed to shale development via their branch located in shale counties, i.e., Firm-county liquidity gain1 or Firm-county liquidity gain2. Plant controls include 
Sales and Sales growth. We provide detailed definitions in Appendix Table A1. We include Plant, County-year, Industry-year, and Headquarters (State)-year fixed effects in 
all specifications. P-values are calculated using heteroscedasticity robust standard errors clustered at the firm level, and reported in parentheses. *,**, and *** indicate 
significance at 10%, 5%, and 1%. 

 Total Toxic Releases 

 
Private Public Private Public Private Public Private Public 

 
(1) (2) (3) (4) (5) (6) (7) (8) 

Firm-county liquidity gain1 -2.869*** 0.051 -3.722*** -0.987 
     (0.000) (0.960) (0.000) (0.453) 
    Firm-county liquidity gain2 

    
-2.874*** 0.014 -3.797*** -0.846 

     
(0.000) (0.990) (0.000) (0.549) 

Plant controls No No Yes Yes No No Yes Yes 
Plant fixed effects Yes Yes Yes Yes Yes Yes Yes Yes 
County-year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes 
Industry-year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes 
Headquarters(State)-year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 37,781 48,463 23,913 31,609 37,781 48,463 23,913 31,609 
R-squared 0.914 0.921 0.920 0.935 0.914 0.921 0.920 0.935 
# of plants 5133 6347 3405 4460 5133 6347 3405 4460 



46 

 
 

Table 8 Positive Liquidity Shocks, Deposit Growth, and Plant Toxic Releases, 2SLS 
Results 

This table reports the 2SLS regressions of a plant’s releases of toxic pollutants on its headquartered county-
specific liquidity shocks. We exclude plants and firms in shale counties. The dependent variable is the logarithm 
of the total volume of toxic chemical releases across all columns for each plant in a given year. The explanatory 
variable, County-bank deposit growth, equals the weighted average of bank deposit growth, where each bank is 
weighted by its local market share in a particular county. Our instruments are one of the county-specific, time-
varying measures on the extent to which banks in a county are exposed to shale development via its branch 
located in shale-boom counties, i.e., Firm-county liquidity gain1 or Firm-county liquidity gain2. Plant controls 
include Sales and Sales growth. We provide detailed definitions in Appendix Table A1. We include Plant, 
County-year, Industry-year, and Headquarters (State)-year fixed effects in all specifications. P-values are 
calculated using heteroscedasticity robust standard errors clustered at the firm level, and reported in parentheses. 
*,**, and *** indicate significance at 10%, 5%, and 1%. 

Panel A: Second-Stage Results 
  Total Toxic Releases 
  (1) (2) (3) (4) 
County-bank deposit growth -8.062** -10.451** -7.387* -9.397** 

 
(0.046) (0.029) (0.051) (0.037) 

Plant controls No Yes No Yes 
Plant fixed effects Yes Yes Yes Yes 
County-year fixed effects Yes Yes Yes Yes 
Industry-year fixed effects Yes Yes Yes Yes 
Headquarters(State)-year fixed effects Yes Yes Yes Yes 
Observations 94,169 62,280 94,169 62,280 
R-squared 0.902 0.909 0.903 0.911 
Weak_ID_FTest 57.40 49.82 61.62 53.52 
# of plants 12291 8633 12291 8633 
  
Panel B: First-Stage Results 
  County-bank deposit growth 
  (1) (2) (3) (4) 
Firm-county liquidity gain1 0.149*** 0.168*** 

   (0.020) (0.024) 
  Firm-county liquidity gain2 

  
0.163*** 0.183*** 

   
(0.021) (0.025) 

Plant controls No Yes No Yes 
Plant fixed effects Yes Yes Yes Yes 
County-year fixed effects Yes Yes Yes Yes 
Industry-year fixed effects Yes Yes Yes Yes 
Headquarters(State)-year fixed effects Yes Yes Yes Yes 
Observations 94,169 62,280 94,169 62,280 
R-squared 0.796 0.803 0.796 0.803 
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Table 9 Negative Liquidity Shocks and Plant Toxic Releases, Maturing Debt 

This table reports the estimates of the effects of a firm’s maturing debt at the onset of the 2007-2008 financial 
crisis on its plants’ releases of toxic pollutants. The analysis uses plants affiliated with public firms for which we 
observe a firm’s debt maturity structure as of the end of fiscal year 2007. In this experiment, we restrict the 
sample period to the 2006 – 2008 in columns 1 and 2, and 2006 – 2009 in columns 3 and 4. Crisis is defined as 
an indicator that equals one in year 2008 (and 2009), and zero in 2006 and 2007. We measure a firm’s exposure 
to maturing debt at the onset of the crisis as follows:  Maturing debt as of 2007 equals the amount of debt 
maturing within one year as a proportion of the total assets as of fiscal year-end 2007. The dependent variable is 
the logarithm of the total volume of toxic chemical releases in all columns. Firm controls include Sales, Sales 
growth, and one-year-lagged Profitability. We provide detailed definitions in Appendix Table A1. We include 
Plant, County-year, Industry-year, and Headquarters (State)-year fixed effects in all specifications. P-values are 
calculated using heteroscedasticity robust standard errors clustered at the firm level, and reported in parentheses. 
*,**, and *** indicate significance at 10%, 5%, and 1%. 

  Total Toxic Releases 

 2006 - 2008 2006 - 2009 
  (1) (2) (3) (4) 
Maturing debt as of 2007 * Crisis 1.702*** 1.708*** 1.775*** 1.680*** 

 (0.003) (0.003) (0.007) (0.009) 
Sales  0.587**  0.689*** 

  (0.026)  (0.010) 
Sales growth  -0.456*  -0.302 

  (0.053)  (0.144) 
Profitability, lag  0.397  0.725 

  (0.427)  (0.101) 
Plant fixed effects Yes Yes Yes Yes 
County-year fixed effects Yes Yes Yes Yes 
Industry-year fixed effects Yes Yes Yes Yes 
Headquarters(State)-year fixed effects Yes Yes Yes Yes 
Observations 7,995 7,994 10,577 10,560 
R-squared 0.971 0.971 0.963 0.963 
# of plants 2820 2820 2930 2930 
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Table 10 Holdings of Private MBS and Bank Loan Growth 

This table presents the cross-section regressions of changes in bank profits and loan growth on their pre-crisis holding of private-label mortgage-backed securities (MBS). 
Panel A provides the summary statistics for the bank sample. Panel B reports the regression results. The dependent variable in columns 1 – 4 is changes in return on assets 
from 2007 to 2010, ΔROA2007-2010, and the change in the commercial and industrial loan growth from 2007 to 2010, ΔC&I Loan Growth2007-2010. The dependent variable in 
columns 5 – 8 is changes in return on assets from 2007 to 2009, ΔROA2007-2009, and the change in the commercial and industrial loan growth from 2007 to 2009, ΔC&I Loan 
Growth2007-2009. The key explanatory variable, Private MBS, equals the total value of private-label mortgage-backed securities held in both trading and investment portfolios, 
scaled by book value of total assets, measured at the end of 2007. Bank characteristics include Total asset, Deposit/Total assets, Liquid assets/Total assets, Mortgages/Total 
assets, C&I loans/Total assets, Loan commitments/Total assets, and Letters of credits/Total assets, all measured at the year of 2007. P-values are calculated using 
heteroscedasticity robust standard errors, and reported in parentheses. *,**, and *** indicate significance at 10%, 5%, and 1%. 

Panel A: Summary Statistics for the Bank Sample 
  N Mean SD P25 P50 P75 

ΔROA2007-2010 6678 -0.005 0.014 -0.008 -0.002 0.001 
ΔC&I Loan Growth2007-2010 6231 -0.127 0.363 -0.327 -0.123 0.075 
ΔROA2007-2009 7013 -0.008 0.016 -0.010 -0.004 0.000 
ΔC&I Loan Growth2007-2009 6523 -0.133 0.363 -0.338 -0.128 0.067 
Private MBS2007 7724 0.003 0.016 0.000 0.000 0.000 
Private MBS2007, exposed banks 1001 0.023 0.039 0.003 0.010 0.027 
Total assets,2007 8082 11.927 1.430 10.988 11.785 12.668 
Deposit/Total asset,2007 8033 0.959 0.254 0.877 0.997 1.110 
Liquid assets/Total assets,2007 8073 0.047 0.055 0.022 0.032 0.050 
C&I loans/Total assets,2007 8021 0.100 0.081 0.046 0.083 0.133 
Mortgages/Total assets,2007 8021 0.444 0.205 0.308 0.462 0.600 
Loan commitments/Total assets,2007 8021 0.124 0.114 0.054 0.101 0.161 
Letters of credits/Total assets,2007 8071 0.007 0.016 0.000 0.002 0.007 
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Panel B: Regression Results 
  2007 – 2010 2007 – 2009 

 

ΔROA2007-2010 ΔC&I Loan Growth2007-2010 ΔROA2007-2009 ΔC&I Loan Growth2007-2009 

  (1) (2) (3) (4) (5) (6) (7) (8) 
Private MBS2007 -0.026** -0.033*** -1.264*** -1.115*** -0.040*** -0.038*** -1.279*** -1.097*** 

 (0.017) (0.003) (0.000) (0.000) (0.008) (0.007) (0.001) (0.003) 
Bank characteristics, 2007 No Yes No Yes No Yes No Yes 
Observations 6,596 6,596 6,052 6,052 6,927 6,927 6,333 6,333 
R-squared 0.001 0.079 0.002 0.056 0.001 0.094 0.002 0.066 
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Table 11 MBS-Induced Negative Liquidity Shocks and Plant Toxic Releases 

This table presents the effects of MBS-induced liquidity shocks to a firms’ headquartered county on its plants’ 
releases of toxic chemicals. The unit of analyses is the cross-section at the plant level. The dependent variable is 
the log change of total amount of toxic emissions by a plant from 2007 to 2010. The key explanatory variable, 
Firm-county exposure to private MBS2007 (or 2006), equals the weighted average of banks’ holding of private MBS 
across banks operating in a firm’s headquarters county as of 2007 (or 2006), where we weight each bank by its 
market share in the county. Plant controls include Sales and Sales growth as of 2007. We include County, 
Industry-year, and Headquarters (State) fixed effects in all specifications. P-values are calculated using 
heteroscedasticity robust standard errors clustered at the firm level, and reported in parentheses. *,**, and *** 
indicate significance at 10%, 5%, and 1%. 

  Δ Total Toxic Releases2007-2010 
  (1) (2) (3) (4) 
Firm-county exposure to private MBS2007 22.035*** 30.455***   

 
(0.001) (0.000)   

Firm-county exposure to private MBS2006   15.323*** 17.508*** 

   (0.004) (0.006) 
Plant controls No Yes No Yes 
County FE Yes Yes Yes Yes 
Industry FE Yes Yes Yes Yes 
Headquarters(State) FE Yes Yes Yes Yes 
Observations 7,876 5,086 7,876 5,086 
R-squared 0.178 0.241 0.178 0.241 
 


